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Abstract

The finite volume method of radiation is implemented for complex 3-D problems in order to use it for combined heat
transfer problems in connection with CFD codes. The method is applied for a 3-D block structured grid in a radiatively
participating medium. The method is implemented in non-orthogonal curvilinear coordinates so that it can handle irreg-
ular structure with a body-fitted structured grid. The multiblocking is performed with overlapping blocks to exchange the
information between the blocks. Five test problems are considered in this work. In the first problem, present work is val-
idated with the results of the literature. To check the accuracy of multiblocking, a single block is divided into four blocks
and results are validated against the results of the single block simulated alone in the second problem. Complicated
geometries are considered to show the applicability of the present procedure in the last three problems. Both radiative
and non-radiative equilibrium situations are considered along with an absorbing, emitting and scattering medium.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The finite volume method (FVM) is one of the pop-
ular methods used in computational fluid dynamics
(CFD) and has been extensively used in many of its
applications. In radiative heat transfer through partici-
pating media, there are quite a lot of methods that have
been used by researchers over the past years. Among
them, the FVM is also a promising method which use
has significantly been increased during the last decade
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[1–7]. For the problems involving combined conduction,
convection and radiation, it is always convenient to use
the same grid philosophy which eliminates the need to
interpolate variables like temperature, incident radiation
etc. The FVM is an alternative for this and has been
found to be very promising for the problems with radi-
ation and CFD applications.

The FVM has been applied for many different situa-
tions by the researchers. It has been applied for 2-D and
3-D Cartesian and cylindrical geometries, orthogonal
and non-orthogonal curvilinear coordinates, 2-D block
structured grids and also for 3-D unstructured grids.
The method is not yet implemented for 3-D block struc-
tured grids and that is the motivation for the present
work.
ed.

mailto:prabal_iitg@yahoo.com


Nomenclature

a coefficient of the discretization equation
A area of control volume faces
b source term in the discretization equation
Dl

c direction cosine integrated over DXl

ê unit vector
f weight factor for interpolation
g non-dimensional incident radiant energy

ð¼ G
rT 4

ref

Þ
G incident radiant energy
I intensity
m total number of angular directions
n̂ unit outward normal vector
r̂ position vector
s distance traveled by a beam
S source function
T temperature
Th temperature of the hot boundary
Tref reference temperature
wfk weight factor for incident radiation
wfxk, wfyk, wfzk weight factor in x-, y- and z-direc-

tion for heat flux
x, y, z coordinate direction

Greek symbols

b extinction coefficient
DV volume of a control volume

DXl control angle
e emissivity
j absorption coefficient
l, n, g direction cosines in x-, y- and z-directions
h polar angle
r Stefan–Boltzmann constant or scattering

coefficient
/ azimuthal angle
U scattering phase function
x scattering albedo ð¼ r

bÞ

Subscripts

b blackbody
E, W, N, S, B,T east, west, north, south, bottom and

top neighbors of P
e, w, n, s, b, t east, west, north, south, bottom and

top control-volume faces
h hot boundary
m medium
P control volume point
x, y, z coordinate directions

Superscript

l 0 angular directions
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Looking back to the history of the FVM in radiative
transfer, Chui and co-workers [1,2] proposed this
method around 1990. They implemented this method
for Cartesian meshes [1] and also for cylindrical meshes
[2]. They also implemented it for non-orthogonal
boundary-fitted meshes [3]. A slightly different control
volume approach is adopted by Chai and his co-workers
[4–7] for the FVM in radiation. Their FVM calculation
procedure is compatible with the control volume ap-
proaches of Karki and Patankar [8–10], Demirdzic
et al. [11], Peric [12], Shyy et al. [13], and Rhie and Chow
[14]. The present work is also based on this approach.
Chai et al. [4] discussed the FVM for 2-D and 3-D
Cartesian enclosures with collimated radiation and heat
generation. They used step and exponential scheme for
finding out the face intensities and considered an
absorbing, emitting and anisotropically scattering
media. In other works [5–7], they have implemented
FVM for irregular geometries. They used a Cartesian
based blocked-off region concept [5] and body-fitted
coordinate system [6] to simulate different irregular
structures in a 2-D domain. They used multiblock proce-
dure [7] to simulate 2-D complex geometries and dis-
cussed the advantages associated with this approach
compared to blocked-off region concept and body-fitted
meshes. As far as unstructured mesh is concerned, Mur-
thy and Mathur [15] have extended the FVM for radia-
tion for arbitrary geometries with meshes composed of
convex polyhedra. They extended the same methodol-
ogy for axisymmetric geometries [16].

The block-structured grid is a very popular method
in CFD because of its accuracy and flexibility to com-
plicated geometries. Although, in the present days,
unstructured grids are used mainly in industrial prob-
lems due to the complexity of the geometries, but still
there are many problems which can be solved by struc-
tured grids. The structured grids are more accurate than
the unstructured one and have considerably less memory
requirement compared to the unstructured meshes for
the same level of accuracy. Keeping in mind these
advantages, the aim of this work is to generate a code
which can be coupled to a similar CFD code for com-
bined heat transfer processes. The FVM for radiation
also uses the same methodology as applied to block
structured grids in CFD. The information from one
block to another is copied with the help of overlapping
blocks and thus suffers no errors with the blocking pro-
cedure. For a test case, one single block is divided into
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four blocks to compare the results of the four blocks
with the single block. Since the block transforms the
information with overlapping blocks, the method re-
mains conservative also for multiblock. The multiblock-
ing in radiation is previously done by Chai and Moder
[7] in a 2-D domain. They did it for straight and curved
interphases between the blocks. They also considered
matching and non-matching grids between different
blocks. They made an energy balance between the
blocks to calculate the intensities in the interface. They
did not use any overlapping blocks like the present
work.

This work is presented with five test problems. First
the 3-D code is validated with the available results for
a single block. The multiblocking procedure is validated
in the second problem. Then other three test problems of
irregular structures are considered which are either vali-
dated or justified with reasoning.
2. Mathematical formulation

The radiative transfer equation (RTE) for a gray
absorbing, emitting and scattering medium in the direc-
tion ŝ can be written as

dIð~r; ŝÞ
ds

¼ �bð~rÞIð~r; ŝÞ þ Sð~r; ŝÞ ð1Þ

where the source function can be defined as

Sð~r; ŝÞ ¼ jð~rÞIbð~rÞ þ
rð~rÞ
4p

Z
Ið~r; ŝ0ÞUðŝ0; ŝÞdX0 ð2Þ

In Eqs. (1) and (2),~r and ŝ are the position vector and
the unit vector describing the radiative intensity direc-
tion, respectively.
Fig. 1. (a) Schematic of a 3-D control v
The discretization procedure of RTE is according to
that of Chai et al. [4] and is not repeated here. Integrat-
ing the RTE (Eq. (1)) over a 3-D control volume
(Fig. 1(a)) and over a control angle (Fig. 1(b)), the final
discretized equation can be written as

alPI
l
P ¼ alWI

l
W þ alEI

l
E þ alSI

l
S þ alNI

l
N þ alBI

l
B þ alTI

l
T þ bl

ð3Þ
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alE ¼ max AwDl
cw

1� f
f

� �
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� �
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� �

alS ¼ max AnDl
cn

1� f
f

� �
� AsDl

cs; 0

� �
ð4bÞ

alT ¼ max AbDl
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� �
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� �
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bl ¼ Sl
PDV PDX

l ð4eÞ
olume, (b) a typical control angle.
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Dl
ce ¼

Z
DXl

ðŝl � êeÞdX; Dl
cn ¼

Z
DXl

ðŝl � ênÞdX;

Dl
ct ¼

Z
DXl

ðŝl � êtÞdX; Dl
cw ¼ �Dl

ce;

Dl
cs ¼ �Dl

cn and Dl
cb ¼ �Dl

ct ð5Þ
Here in the above equations, êe, ên and êt are the unit
area vectors perpendicular to the east, north and top
faces, respectively. For Cartesian coordinates, they
become x-, y- and z-directions.

In Eqs. (4a)–(4e), Ae, Aw, An, As, At and Ab are the
face areas of east, west, north, south, top and bottom
faces, respectively and f is the interpolation factor to re-
late the cell face intensities to the node intensities which
value lies between 1 and 0.5. It is termed as a step
scheme for f = 1 and as a diamond scheme for f = 0.5.

The solid angle DXl in Eq. (4e) is integrated analyti-
cally as

DXl ¼
Z /þd/

2

/�d/
2

Z hþdh
2

h�dh
2

sin hdhd/

¼ d/ cos h� dh
2

� �
� cos hþ dh

2

� �� �
ð6Þ

For an isotropically scattering medium, the source term
Sl
P in Eq. (4e), can be calculated as

Sl
P ¼ jPIb;P þ

rP

4p

XL

l0¼1

Il
0

PDX
l0 ð7Þ

where the black body radiation term can be calculated as

Ib;P ¼ rPT 4
P

p
ð8Þ

The intensity direction ŝ in Eq. (5) is defined as

ŝ ¼ ðsin h cos/Þêx þ ðsin h sin/Þêy þ ðcos hÞêz ð9Þ

In Eq. (9), h and / are the polar and azimuthal angle
measured as shown in Fig. 2.
θ
zê

xê

yê

φr

ŝ

y

x

z

Fig. 2. A typical angular direction.
The calculation of the volume DVP and the area
vectors êe, ên and êt are according to the formulation
of curvilinear coordinates and is not explained here.

2.1. Calculation of incident radiation G

The incident radiation G is calculated as:

Gð~rÞ ¼
Z
4p
Ið~r; ŝÞdX ¼

Z 2p

/¼0

Z p

h¼0

I sin hdhd/

¼
X
k¼1;m

Ikwf k ð10Þ

where wf k ¼ d/ cosðhk � dh
2
Þ � cosðhk þ dh

2
Þ.

2.2. Calculation of heat flux q

The heat flux q in x-, y- and z-directions can be cal-
culated as

qxð~rÞ ¼
Z
2p
Ið~r; ŝÞð~r � êxÞdX

¼
Z 2p

/¼0

Z p

h¼0

I sin h cos/ sin hdhd/

¼
X
k¼1;m

Ik wfxk ð11aÞ

qyð~rÞ ¼
Z
2p
Ið~r; ŝÞð~r � êyÞdX

¼
Z 2p

/¼0

Z p

h¼0

I sin h sin/ sin hdhd/

¼
X
k¼1;m

Ik wfyk ð11bÞ

qzð~rÞ ¼
Z
2p
Ið~r; ŝÞð~r � êzÞdX

¼
Z 2p

/¼0

Z p

h¼0

I cos h sin hdhd/

¼
X
k¼1;m

Ik wfzk ð11cÞ

where the weight factors wfx, wfy, wfz can be integrated
analytically between the limits h� dh

2
and /� d/

2
as

wfx ¼
Z

ðsin h cos/Þ sin hdhd/

¼ 0.5 sin /þ d/
2

� �
� sin /� d/

2

� �� �

� dh� 0.5ðsin 2hþ dhf g � sin 2h� dhf gÞ½ �
ð12aÞ

wfy ¼
Z

sin h sin/ð Þ sin hdhd/

¼ 0.5 cos /� d/
2

� �
� cos /þ d/

2

� �� �

� dh� 0.5 sin 2hþ dhf g � sin 2h� dhf gð Þ½ �
ð12bÞ
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wfz ¼
Z

cos h sin hdhd/

¼ d/
4

cos 2h� dhf g � cos 2hþ dhf gð Þ ð12cÞ
2.3. Solution procedure

The discretization results in a set of algebraic equa-
tion of intensity. The marching procedure adopted here
is similar to Chai et al. [4] and hence is not discussed
here. Due to 3-D nature, we have eight marching direc-
tions as compared to four marching directions in case of
the 2-D problems of Chai and Moder [7].
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Fig. 4. Unit cube under consideration.
2.4. Multiblocking strategy

The transformation of information between neigh-
bouring blocks is done with the help of overlapping
blocks.

A typical 2-D block arrangement is shown in Fig. 3.
The two blocks are extended towards each other to ex-
change a particular variable as shown in Fig. 3. The
information from block 1 is carried via the nodes 21–
25 to the block 2 by the nodes 31–35. That means any
variable (var) of interests at the overlapping nodes of
block 1 to block 2 are copied as: var(31) = var(21),
var(32) = var(22) and so on. Similarly the block 1 copies
the information from block 2 as: var(26) = var(36),
var(27) = var(37) and so on. The procedure gives
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complete conservation of radiant energy between the
blocks.
3. Results and discussion

Several problems are solved to check the validity of
the present work. First, the 3-D code is validated with
the results available in the literature. A unit cubical
enclosure with one block is considered for this purpose.
The same geometry is then divided into four blocks and
the results are compared with the one block results to
validate the multiblocking procedure. In the next prob-
lem, an L-shaped geometry is considered whose results
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are compared with results available in the literature. A
complex geometry with 16 blocks are considered to
show the applicability of the present work in the fourth
problem. In the last problem, a J-shaped enclosure is
considered to show the applicability of the present
blocking procedure for inclined planes. Problems are
considered with both the radiative equilibrium and
non-radiative equilibrium situations. The medium is
assumed to be participating with different optical
properties.
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Fig. 5. Comparison of results of a 3D geom
3.1. Problem 1

A unit cubical enclosure is considered (Fig. 4) as dis-
cussed by Fiveland [17]. The walls of the enclosures are
considered to be radiatively black (e = 1) and a radiative
equilibrium situation is considered. Three boundaries
are at unit emissive power (¼ erT 4

h ¼ 1, Th is the temper-
ature of these boundaries) viz. east boundary (x = 1),
south boundary (y = 0) and bottom boundary (z = 0).
The other boundaries are cold with zero emissive power.
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The medium has an extinction coefficient of b = 1.0. The
results of emissive power (=rT4) are shown in Fig. 5.
The results are shown at a plane z = 0.5 and along dif-
ferent lines at y = 0.1, 0.3, 0.5, 0.7 and 0.9. The number
of control volumes and control angles considered are
10 · 10 · 10 and 10 · 8 (h · /), respectively and both
step and diamond scheme are considered for compari-
son of the results. It is seen that the results compare
well with the discrete ordinates results of Fiveland
[17].

3.2. Problem 2

Having validated the code with one block in the first
problem, the accuracy of the multiblocking procedure is
discussed here in this problem with a radiative equilib-
rium situation. Same unit enclosure is considered. The
south boundary (y = 0) is assumed to be hot (T = 1)
while other boundaries are assumed to be cold (T = 0).
All boundaries are black and the medium is isotropically
scattering with an extinction coefficient b = 1.0.
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Fig. 9. (a) Geometry and mesh of the Ib shaped enclosure, (b) contour
at z = 0.5 and x = 0, (d) contours of g at z = 0.1 and x = 0.
The whole 3-D domain is divided into four blocks as
shown in Fig. 6. The results with four blocks are com-
pared with the results taking the whole domain as a sin-
gle block. Results are found to be exactly the same.
Temperature contours are shown in Fig. 6 at two differ-
ent locations. Since results are exactly the same for mul-
tiblocking and single blocking, only one set of plots are
visible. The number of control volumes and control an-
gles considered are 10 · 10 · 10 and 10 · 8 (h · /),
respectively and the step scheme is considered for inter-
polation. The accuracy of the results is not the issue of
the current problem and so only a reasonable number
of control volumes and control angles are considered
and no further attempt is tried to optimize the results
with spatial and angular grids.

3.3. Problem 3

The third problem considered is an L-shaped enclo-
sure previously considered by Malalasekera and James
[18]. They used a body fitted grid with the discrete trans-
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fer method used to solve the RTE. An absorbing, emit-
ting medium is considered with an uniform temperature
of 1000 K. The boundaries are black and at 500 K. Dif-
ferent extinction coefficients viz. b = 0.5, 1.0, 2.0 and
10.0 are considered. The net heat flux along the line
a1a2 (Fig. 7(a)) is shown in Fig. 7(b) for different extinc-
tion coefficients. Both step and diamond schemes are
used and results are found to be similar with the results
of [18]. The L-shaped enclosure is divided into three
blocks and a total of 50 · 30 · 10 numbers of control vol-
ume with a 10 · 8 (h · /) control angles are considered
for sufficient agreement with [18]. It is to be noted here
that the grid quality in the present case is better than
the body fitted grids of [18]. The contour of incident radi-
ation gð¼ G

rT 4
ref

; T ref ¼ 1000Þ is shown in Fig. 8 with two

different slices at x = 0.5 and x = 2.0. The results show
correct physical trend of the present problem.

3.4. Problem 4

The fourth problem considered is a similar problem
considered by Chai et al. for a 2-D geometry with mul-
tiblocking [7]. The similar geometry is extended here in
the third dimension. The enclosure looks like the letter
Ib. All boundaries are considered to be cold (T = 0)
and black and the medium is at some uniform tempera-
ture Tm. An extinction coefficient b = 1 is considered.

A total of 16 blocks are considered for this problem.
In Fig. 9(a), the mesh and the blocks considered in this
works are shown. The step scheme is considered here
and a control angle of 10 · 8 (h · /) is considered for
angular discretization.

In Fig. 9(b)–(d), contour plots for incident radiation
gð¼ G

rT 4
ref

; T ref ¼ TmÞ are shown at different position and

different conditions. In Fig. 9(b), g distributions are
shown for the scattering albedo x = 0.5. The position
of the slice is at z = 0.5. This can be compared with
Fig. 9(b) which is also drawn at the same position with
a scattering albedo x = 0. With higher scattering, the
medium losses more heat to the surroundings and results
in a lower value of g which can be seen from Fig. 9(b).
The average g distribution range is lower in this case
than in Fig. 9(c). Fig. 9(d) shows the g distribution at
the location x = 0.1 with the other conditions same as
in Fig. 9(c). It is seen that the value of g decreases as
soon as the slice moves towards the boundary. The
trends observed from these plots are physically correct
and also similar to the plots shown by Chai and Moder
[7] for their 2-D geometry.

3.5. Problem 5

In Fig. 10(a) and (b), a J-shaped enclosure is consi-
dered to show the applicability of the work to a body-fit-
ted curvilinear grid. The geometry is similar to the 2-D
geometry previously considered by Chai et al. [5]. The
same geometry is extended in z-direction by 0.4 m. The
geometry can be understood from Fig. 10(a). The mesh
consists of three blocks and a mesh size of total
11 · 30 · 6 is used in x-, y- and z-directions. A control
angle of 10 · 8 (h · /) is considered with step scheme
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used for interpolation. The south boundaries are hot
and at temperature Th and others are assumed as cold
as shown in Fig. 10(a). In Fig. 10(a), contours of incident
radiation gð¼ G

rT 4
ref

; T ref ¼ T hÞ are shown at two different
locations x = 0.3 and x = 2.2. Since the slice at x = 2.2 is
closer to the hot boundary, higher g distributions can be
observed in comparison to the slice at x = 0.3. The con-
tour plot of g is shown at position z = 0.2 in Fig. 10(b).
All the plots are similar to the plots of Chai et al. [5]
for 2-D calculations. In both the figures, plots show the
correct trend with the imposed boundary conditions.
4. Summary

The finite volume method is applied for 3-D curvili-
near coordinates with a multiblock procedure. Compli-
cated geometries can be simulated by dividing the whole
domain with several hexahedral blocks. Several prob-
lems are solved to show the accuracy and applicability
of the proposed multiblocking. Results are found to be
promising as they are validated with the existing results
of the literature. The proposed procedure has the flexi-
bility to couple with the CFD codes since it is based
on the same block-structured grid philosophy as the
CFD codes do.
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